
Approved for public release; distribution unlimited.

Developing Multiagent Systems with
agentTool

The Seventh International Workshop on Agent Theories,
Architectures, and Languages (ATAL-2000)

Boston, MA, July 7-9, 2000.

Scott A. DeLoach & Mark Wood

Department of Electrical & Computer Engineering
Air Force Institute of Technology

2950 P Street, Wright-Patterson AFB, OH 45433-7765

The views expressed in this article are those of the authors and do not reflect the official policy or position of the United
States Air Force, Department of Defense, or the US Government.

The 7th International Workshop on Agent Theories,
Architectures, and Languages (ATAL-2000)

Boston, MA, July 7-9, 2000.

Developing Multiagent Systems with agentTool

Scott A. DeLoach and Mark Wood

Department of Electrical and Computer Engineering
Air Force Institute of Technology

2950 P Street, Wright-Patterson AFB, OH 45433-7765
scott.deloach@afit.af.mil

Abstract. The advent of multiagent systems has brought together many
disciplines and given us a new way to look at intelligent, distributed systems.
However, traditional ways of thinking about and designing software do not fit
the multiagent paradigm. This paper describes the Multiagent Systems
Engineering (MaSE) methodology and agentTool, a tool to support MaSE.
MaSE guides a designer from an initial system specification to implementation
by guiding the designer through a set of inter-related graphically based system
models. The underlying formal syntax and semantics of clearly and
unambiguously ties them together as envisioned by MaSE.

1. Introduction

The advent of multiagent systems has brought together many disciplines in an effort
to build distributed, intelligent, and robust applications. They have given us a new
way to look at distributed systems and provided a path to more robust intelligent
applications. However, many of our traditional ways of thinking about and designing
software do not fit the multiagent paradigm. Over the past few years, there have been
several attempts at creating tools and methodologies for building such systems.
Unfortunately, many of the tools have focused on a single agent architecture [8, 11] or
have not been adequately supported by an automated toolset [4, 14]. In our research,
we have been developing both a complete-lifecycle methodology and a
complimentary environment for analyzing, designing, and developing heterogeneous
multiagent systems. The methodology we are developing is called Multiagent
Systems Engineering (MaSE) while the tool we are building to support that
methodology is called agentTool.

In this research, we view agents as a specialization of the objects. Instead of
objects whose methods that can be invoked by other objects, agents coordinate their
actions via conversations to accomplish individual and community goals.
Interestingly, this viewpoint sidesteps the issues regarding what is or is not an agent.
We view agents merely as a convenient abstraction, which may or may not possess
intelligence. In this way, we can handle intelligent and non-intelligent system
components equally within the same framework. This view also justifies our use
object-oriented tools and techniques. Since agents are specializations of objects, we
can tailor general object-oriented methods and apply them to the specification and
design of multiagent systems.

 2

2. Multiagent Systems Engineering Methodology

The general flow of MaSE follows the seven steps shown in Figure 1. The rounded
rectangles on the left side denote the models used in each step. The goal of MaSE is
to guide a system developer from an initial system specification to a multiagent
system implementation. This is done by directing the designer through this set of
inter-related system models. Although the majority of the MaSE models are
graphical, the underlying semantics clearly and unambiguously defines specific
relationships between the graphical models.

Creating Agent
Classes

Require-
ments

Use Cases

Sequence
Diagrams

Deployment
Diagrams

Agent
Architecture

Capturing
Goals

Refining Roles

Assembling
Agent Classes

System Design

Applying Use
Cases

Goal
Hierarchy

RolesConcurrent
Tasks

Conver-
sations

Agent
Classes

Constructing
Conversations

Analysis
D

esign

Fig. 1. MaSE Methodology

MaSE is designed to be applied iteratively. Under normal circumstances, we
would expect a designer to move through each step multiple times, moving back and
forth between models to ensure each model is complete and consistent. While this is
common practice using most design methodologies, MaSE was specifically designed
to support this process by formally capturing the relationships between the models.
By automating the MaSE models in our agentTool environment, these relationships
can be captured and enforced thus supporting the designer’s ability to freely move
between steps. The result is consistency between the various MaSE models and a
system design that satisfies all the original goals of the system.

 3

MaSE, as well as agentTool, is independent of a particular multiagent system
architecture, agent architecture, programming language, or communication
framework. Systems designed using MaSE can be implemented in a variety ways.
For example, a system could be designed and implemented that included a
heterogeneous mix of agent architectures using any one of a number of existing
underlying communication frameworks. The ultimate goal of MaSE and agentTool is
the automatic generation of code that is correct with respect to the original system
specification.

2.1. Capturing Goals

The first step in the MaSE methodology is Capturing Goals, which takes the initial
system specification and transforms it into a structured set of system goals, depicted
in a Goal Hierarchy Diagram, as shown in Figure 2. In MaSE, a goal is always
defined as a system-level objective. Lower-level constructs may inherit or be
responsible for goals, but goals always have a system-level context.

1. Detect and notify
administrator of host

violations.

1.1.3a/1.1.2a
Ensure the admin

receives notification.

1.1.1 Determine if
files have been

deleted or modified.

1.1.2 Detect user
attempts to modify

files.

1.1.3 Notify
administrator of

violations.

1.2.1 Determine if
invalid user tries to

login

1.2.2 Notify
administrator of
login violations

1.1 Detect & notify
admin of system file

violations.

1.2 Detect and
notify administrator
of login violations.

Fig. 2. Goal Hierarchy Diagram

There are two steps to Capturing Goals: identifying the goals and structuring
goals. Goals are identified by distilling the essence of the set of requirements. These
requirements may include detailed technical documents, user stories, or formalized
specifications. Once these goals have been captured and explicitly stated, they are
less likely to change than the detailed steps and activities involved in accomplishing
them [6]. Next, the identified goals are analyzed and structured into a Goal Hierarchy
Diagram. In a Goal Hierarchy Diagram, goals are organized by importance. Each
level of the hierarchy contains goals that are roughly equal in scope and all sub-goals
relate functionally to their parent. Eventually, each goal will be associated with roles
and agent classes that are responsible for satisfying that goal.

 4

2.2. Applying Use Cases

The Applying Uses Cases step is a crucial step in translating goals into roles and
associated tasks. Use cases are drawn from the system requirements and are narrative
descriptions of a sequence of events that define desired system behavior. They are
examples of how the system should behave in a given case.

To help determine the actual communications required within a multiagent system,
the use cases are restructured as Sequence Diagrams, as shown in Figure 3. A
Sequence Diagram depicts a sequence of events between multiple roles and, as a
result, defines the minimum communication that must take place between roles. The
roles identified in this step form the initial set of roles used to fully define the system
roles in the next step. The events identified here are also used later to help define
tasks and conversations since all events between roles will require a conversation
between the agent classes if the roles are played by different agent classes.

FileModifiedDetector FileNotifier AdminNotifier User

FileViolation

RequestNotification

Notify

Acknowledge

NotificationComplete

Reported

Fig. 3. Sequence Diagram

2.3. Refining Roles

The third step in MaSE is to ensure we have identified all roles in the resulting system
and to develop the tasks that define exactly what the roles will do. Roles are
identified from the Sequence Diagrams developed during the Applying Use Cases
step as well as the system goals defined in Capturing Goals. We ensure all system
goals are accounted for by associating each goal with a specific role that is eventually
played by at least one agent in the final design. A role is an abstract description of an
entity’s expected function and is similar to the notion of an actor in a play or an office
within an organization [5]. Each goal is usually mapped to a single role. However,
there are many situations where it is useful to combine multiple goals in a single role
for convenience or efficiency. We base these decisions on standard software
engineering concepts such as functional, communicational, procedural, or temporal
cohesion. Other factors include the natural distribution of resources or special
interfacing issues. Roles are captured in a Role Model as shown in Figure 4.

 5

FileNotifier
1.1

LoginNotifier
1.2

FileDeletionDetector
1.1.1

FileModifiedDetector
1.1.2

LoginDetector
1.2.1

AdminNotifier
1.1.3a
1.2.2a

User

Fig. 4. Role Model

Once roles have been defined, tasks are created. A set of concurrent tasks provide
a high-level description of what a role must do to satisfy its goals including how it
interacts with other roles. An example of a MaSE Concurrent Task Diagram, which
captures a bidder’s behavior in a Contract Net Protocol, is shown in Figure 5. The
syntax of a transition follows the notation shown below [2].

trigger(args1) [guard] / transmission(args2)

The statement is interpreted to say that if an event trigger is received with a
number of arguments args1 and the condition guard holds, then the message
transmission is sent with the set of arguments args2. All items are optional. For
example, a transition with just a guard condition, [guard], is allowed, as well as one
with a received message and a transmission, trigger / transmission. Multiple
transmission events are also allowed and are separated by semi-colons (;). Actions
may be performed in a state and are written as functions.

idle

evaluate
t = setTimer(TIME) wait

prepareBid
c = costToPerform(task)

bid = acceptability(c, task)

receive(announce(task), ag)

[bid] send(bid(task, c), ag)

receive(acknowledge, ag)

receive(announce(task, cost), ag) [timeout(t)]
/send(acknowledge, ag); start(task, ag)

[NOT bid]

receive(sorry(task), ag)

Fig. 5. MaSE Task

2.4. Creating Agent Classes

In Creating Agent Classes, agent classes are identified from roles and documented in
an Agent Class Diagram, as shown in Figure 6. Agent Class Diagrams depict agent

 6

classes as boxes and the conversations between them as lines connecting the agent
classes. As with goals and roles, we generally define a one-to-one mapping between
roles, which are listed under the agent class name, and agent classes. However, the
designer may combine multiple roles in a single agent class or map a single role to
multiple agent classes. Since agents inherit the communication paths between roles,
any paths between two roles become conversations between their respective classes.
As such, it is often desirable to combine two roles that share a high volume of
message traffic. When determining which roles to combine, concepts such as
cohesion and the volume of message traffic are important considerations.

FileMonitor
FileDeletionDetector
FileModifiedDetector

LoginMonitor
LoginDetector

DetectNotify
FileNotifier

LoginNotifier

Notifier
AdminNotifier

User
User

Violation

RequestNotification

RequestNotification

Notify

Fig. 6. Agent Class Diagram

2.5. Constructing Conversations

Constructing Conversations is the next step of MaSE, which is often performed
almost in parallel with the succeeding step of Assembling Agents. The two steps are
closely linked as the agent architecture defined in Assembling Agents must
implement the conversations and methods defined in Constructing Conversations. A
MaSE conversation defines a coordination protocol between two agents. Specifically,
a conversation consists of two Communication Class Diagrams, one each for the
initiator and responder. A Communication Class Diagram is a pair of finite state
machines that define a conversation between two participant agent classes. One side
of a conversation is shown in Figure 7. The initiator always begins the conversation
by sending the first message. The syntax for Communication Class Diagrams is very
similar to that of Concurrent Task Diagrams. The main difference between
conversations and concurrent tasks is that concurrent tasks may include multiple
conversations between many different roles and tasks whereas conversations are
binary exchanges between individual agents.

 7

2.6. Assembling Agents

In this step of MaSE, the internals of agent classes are created. Robinson [13]
describes the details of assembling agents from a set of standard or user-defined
architectures. This process is simplified by using an architectural modeling language
that combines the abstract nature of traditional architectural description languages
with the Object Constraint Language, which allows the designer to specify low-level
details. A current focus of our research is how to map tasks to conversations and
internal agent architectures. The actions specified in the tasks and conversations must
be mapped to internal functions of the agent architecture.

Validation
x = validateTask(t)

NewTask
id = createNewTask(t)

Resend

NewTask(t)

NewTask(t) [NOT X] ^ Invalid()

[X]

^ Accepted(id)

Cancel

Fig. 7. Communication Class Diagram

2.7. System Deployment

The final step of MaSE defines the configuration of the actual system to be
implemented. To date, we have only looked at static, non-mobile systems although
we are currently investigating the specification and design of dynamic and mobile
agent systems. In MaSE, we define the overall system architecture using Deployment
Diagrams to show the numbers, types, and locations of agents within a system as
shown in Figure 8. The three dimensional boxes denote individual agents while the
lines connecting them represent actual conversations. A dashed-line box indicates
agents that are located on the same physical platform.

The agents in a Deployment Diagram are actual instances of agent classes from the
Agent Class Diagram. Therefore, each agent class may have one or more instances in
the Deployment Diagram. Likewise, since the lines between agents indicate
communications paths, they are derived from the possible conversations defined in
the Agent Class Diagram as well. However, just because an agent type or
conversation is defined in the Agent Class Diagram, it does not necessarily have to
appear in a Deployment Diagram.

System Deployment is also where all previously undefined implementation
decisions, such as programming language or communication framework, must be
made. While in a pure software engineering sense, we want to put off these decisions
until this step, there will obviously be times when the decision are made early,
perhaps even as part of the requirements.

 8

Fig. 8. Deployment Diagram

3. agentTool

The agentTool system is our attempt to implement a tool to support and enforce
MaSE. Currently agentTool implements three of the seven steps of MaSE: Creating
Agent Classes, Constructing Conversations, and Assembling Agent Classes. We are
currently adding support for the analysis phase.

The agentTool user interface is shown in Figure 9. The menus across the top allow
access to several system functions, including a persistent knowledge base [12],
conversation verification, and code generation. The buttons on the left add specific
items to the various diagrams while the text window below them displays system
messages.

MaSE diagrams are accessed via the tabbed panels across the top of the main
window. When a MaSE diagram is selected, the designer can manipulate it
graphically in the window. Each panel has different types of objects and text that can
be placed on them. Selecting an object in the window enables other related diagrams
to become accessible. For example, in Figure 9, two agents have been added with a
conversation between them. When the user selects the Advertise conversation (by
clicking on the line), the Conv:Advertise Initiator and Conv:Advertise Responder
tabbed panes become visible. The user may then access those diagrams by selecting
the appropriate tab.

The part of agentTool that is perhaps the most appealing is the ability to work on
different pieces of the system and at various levels of abstraction interchangeably,
which mirrors the ability of MaSE to incrementally add detail. The “tabbed pane”

 9

operation of agentTool implements this capability of MaSE since the step you are
working on is always represented by the current diagram and the available tabs show
how you might move up and down through the methodology.

Fig. 9. Agent Class Diagram Panel

It is easier to envision the potential of this capability by considering the
implementation of the entire MaSE methodology in agentTool. During each step of
system development, the various analysis and design diagrams would be available
through tabs on the main window. The ordering of the tabs follows the MaSE steps,
so selecting a tab to the left of the current pane would move “back” in the
methodology while selecting a tab to the right would move “forward”. The available
diagrams (tabs) are controlled by the currently selected object. The available
diagrams include those that can be reached following valid MaSE steps. For instance,
by selecting a conversation, tabs for the associated Communication Class Diagrams
become available while selecting an agent would cause a tab for the Agent
Architecture Diagram to appear.

3.1. Building a Multiagent System using agentTool

Constructing a multiagent system using agentTool begins in an Agent Class Diagram
as shown above in Figure 9. Since a conversation can only exist between agent
classes, agent classes are generally added before conversations. While we can add all
the agent classes to the Agent Class Diagram before adding any conversations, we can
also add “sections” of the system at a time, connecting appropriate agent classes with
conversations, and then moving onto the next section. Either method is supported and
is generally a matter of personal choice.

 10

3.2. Constructing Conversations in agentTool

Once we have defined agent classes and conversations, we can define the details of
the conversations using Communication Class Diagrams. The “Add State” button
adds a state to the panel while the “Add Conversation” button adds a conversation
between the two selected states. A conversation can be verified at any point during its
creation by using the Verify Conversations command from the Command menu [9].
The agentTool verification process ensures conversation specifications are deadlock
free. If any errors exist, the verification results in a highlighted piece or pieces of a
conversation, as shown in Figure 10 on the “Ack” transition (highlights are yellow in
the application). Each highlight indicates a potential error as detected by the
verification routine.

Fig. 10. agentTool Conversation Error

3.3. Assembling Agent Class Components in agentTool

Agent classes in agentTool have internal components that can be added, removed, and
manipulated in a manner similar to the other panels of agentTool. Agent classes do
have an added layer of complexity however, since all of their components can have
Component State Diagrams associated with them and additional sub-components
beneath them. The agent class components shown in Figure 11 are the details of the
“User” agent class from Figure 9.

Details can also be added to lower levels of abstraction. In Figure 11, the
Component Stat Diag and MessageInterface Architecture tabs lead to a Component
State Diagram and Sub-Architecture Diagram respectively. The Component State
Diagram defines the dynamic behavior of the component while the Sub-Architecture
Diagram contains additional components and connector that further define the
component.

 11

Fig. 11. agentTool Agent Class Components

4. Underlying agentTool Formalisms

The formal semantics of MaSE are reflected in the transformations from one
abstraction to the next. For example, agents play roles that capture goals and
conversations have exactly two participants. These semantics are both incorporated
and enforced by agentTool. In a future version of agentTool that incorporates the
entire MaSE methodology, a role could be mapped “backward” to the set of goals
from which it was created or “forward” to the agent class that plays it.

The agentTool system is based on an object hierarchy that mimics the objects in
MaSE. The current agentTool object model is shown in Figure 12. In agentTool,
each System is composed of a set of Agents and Conversations. As described above
each Agent may have an Architecture, which is composed of Components and
Connectors. Likewise, a Conversation is composed of two State Tables, which
consist of a set of States and Transitions. Since the internal object model of
agentTool only allows the configurations permitted by MaSE, we claim that it
formally enforces the MaSE diagram structure and interrelationships.

Since we do not currently have MaSE entirely implemented in agentTool, it is
difficult to see how the diagrams from different parts of the methodology are tied
together. In our current work, we are extending the agentTool object model to
incorporate Goals, Roles, and Tasks. Figure 13 shows this extension to the object
model. In the new object model an Agent plays at least one Role, which consists of
one or more Tasks. Likewise, all Roles must be played by at least one Agent. Each
Role also captures one or more Goals and each Goal is captured by exactly one Role.
This object model makes it easy to see that if the user selects a particular agent, it is
not difficult to determine exactly what Roles, Tasks, Goals, and Conversations may
be affected by any changes to that Agent. What may be even more important is that

 12

the user can select a Goal and easily determine what Roles, Tasks, Agents, and
Conversations might be affected by changes to the goal.

Component

Attribute Operator

Connector

Architecture

System

Agent Conversation

State Transition

StateTable

2

from

to

*

1

**

**

*
*

**

1
*

1

1 *
*

1

2

1

Fig. 12. Current MaSE Object Model

System

Agent Conversation

StateTable

2

1
**

1

Role

Tasks

State Transition
from

to

** 1

1 *
*

plays

1+ 1+

1+

Goals
captures

1+ 1

**

Fig. 13. Extended MaSE Object Model

 13

5. Related Work

There have been several proposed methodologies for analyzing, designing, and
building multiagent systems [4]. The majority of these are based on existing object-
oriented or knowledge-based methodologies. The most widely published
methodology is Gaia methodology [14], which we will use for comparison.

While Gaia and MaSE take a similar approach in analyzing multiagent system,
MaSE is more detailed and provides more guidance to system designer. The first step
in Gaia is to extract roles from the problem specification without real guidance on
how this is done. MaSE, on the other hand, develops Goal Hierarchy and Use Cases
to help define what roles should be developed.

The use of roles by both methodologies is similar. It is used to abstractly define
the basic components within the system. In Gaia, roles define functionality in terms
responsibilities. In MaSE, similar functionality is defined in Concurrent Task
Diagram; however, concurrent tasks provide communication detail not found in Gaia.
Gaia permissions define the use of resources by a particular role, which is not yet
defined in MaSE.

Gaia uses activities to model computations performed within roles and protocols to
define interactions with other roles. These are captured with MaSE tasks, which once
again provide significantly more detail on when actions are performed, the
information input and output from the actions, and how the actions relate to the
interaction protocols.

In the design phase, Gaia only provides a high-level design. It consists of an Agent
Model, which identifies the agent types (and the roles from which they were derived)
and their multiplicity within the system. This information is captured in MaSE Agent
Class Diagrams and Deployment Diagrams.

The Gaia Services Model identifies the main services of the agent type in terms of
the inputs, outputs, pre- and post-conditions. This does not have a direct parallel in
MaSE although services and the details of the interactions (inputs and outputs) are
defined in MaSE tasks and conversations.

Finally, the Gaia acquaintance model identifies lines of communications between
agent types. In MaSE, this information is captured in the Agent Class Diagram,
which also identifies the types of interactions as individual conversations.

6. Future Work

As stated throughout this paper, MaSE and agentTool are works in progress. We are
currently extending MaSE to handle mobility and dynamic systems (in terms of
agents being able to enter and leave the system during execution). We are also
looking more closely at the relationship between tasks, conversations, and the internal
design of agents. As for agentTool, we are extending it to handle all aspects of MaSE
including code generation. We currently have a code generator that generates
complete conversations for a single communication framework. We are also working
on integrating agentTool with the AFIT Wide Spectrum Object Modeling
Environment that is looking at the more general code generation problem.

 14

7. Conclusions

The Multiagent Systems Engineering methodology is a seven-step process that guides
a designer in transforming a set of requirements into a successively more concrete
sequence of models. By analyzing the system as a set of roles and tasks, a system
designer is naturally lead to the definition of autonomous, pro-active agents that
coordinate their actions to solve the overall system goals.

MaSE begins in the analysis phase by capturing the essence of an initial system
context in a structured set of goals. Next, a set of use cases are captured and
transformed into Sequence Diagrams so desired event sequences will be designed into
the system. Finally, the goals are combined to form roles, which include tasks that
describe how roles satisfy their associated goals. In the design phase, roles are
combined to define agent classes and tasks and Sequence Diagrams are used to
identify conversations between the classes. To complete the agent design, the internal
agent architecture is chosen and actions are mapped to functions in the architecture.
Finally, the run-time structure of the system is defined in a Deployment Diagram and
implementation choices such as language and communication framework are made.

MaSE, and our current version of agentTool, has been used to develop 5 to 10
small to medium sized multiagent systems ranging from information systems [7, 10]
and mixed-initiative distributed planners [1] to biologically based immune systems
[3]. The results have been promising. Users tell us that following MaSE is relatively
simple, yet is flexible enough to allow for a variety of solutions. We are currently
using MaSE and agentTool to develop larger scale multiagent systems that are both
mobile and dynamic in nature.

From our research on MaSE and agentTool, we have learned many lessons. First,
it is clear that developing a methodology with an eye towards automation and
formally defined relationships between the various models simplifies the semantics
and makes implementation much easier. Secondly, using object-oriented principles as
a basis for our methodology was the right choice. We consider MaSE a domain
specific instance of the more general object-oriented paradigm. This also simplifies
the underlying formal model and simplifies code generation. Instead of dealing with
a general association, we have just one – a conversation between agents. While
agents are not equivalent to an object, they are a specialization. Once again, we can
focus our methodology and tool thus making the entire process less complex. Finally,
we have shown that you can develop a methodology and tool to support multiple
types of agent architectures, languages, and communications frameworks.

8. Acknowledgements

This research was supported by the Air Force Office of Scientific Research (AFOSR)
and the Dayton Area Graduate Studies Institute (DAGSI). We would also like to
thank Tom Hartrum for help and guidance throughout the development of MaSE and
agentTool. The views expressed in this article are those of the authors and do not
reflect the official policy or position of the United States Air Force, Department of
Defense, or the US Government.

 15

References

1. Cox, M.T., Kerkez, B., Srinivas, C., Edwin, G., Archer, W.: Toward Agent-Based Mixed-
Initiative Interfaces. Proceedings of the International Conference on Artificial Intelligence
(2000)

2. DeLoach, S.A.: Multiagent Systems Engineering: a Methodology and Language for
Designing Agent Systems. Proceedings of Agent Oriented Information Systems '99 (1999)
45-57

3. Harmer, P.K., Lamont, G.B.: An Agent Architecture for a Computer Virus Immune System.
Genetic and Evolutionary Computation Conference (2000)

4. Iglesias, C., Garijo, M., Gonzalez, J.: A Survey of Agent-Oriented Methodologies. In:
Müller, J.P., Singh, M.P., Rao, A.S., (Eds.): Intelligent Agents V. Agents Theories,
Architectures, and Languages. Lecture Notes in Computer Science, Vol. 1555. Springer-
Verlag, Berlin Heidelberg (1998)

5. Kendall, E.A.: Agent Roles and Role Models: New Abstractions for Multiagent System
Analysis and Design. International Workshop on Intelligent Agents in Information and
Process Management (1998)

6. Kendall, E.A., U. Palanivelan, S. Kalikivayi: Capturing and Structuring Goals: Analysis
Patterns. European Pattern Languages of Programming. (1998)

7. Kern, S.C.G., Cox, M.T., Talbert M.L.: A Problem Representation Approach for Decision
Support Systems. Proceedings of the Eleventh Annual Midwest Artificial Intelligence and
Cognitive Science Conference (2000) 68-73

8. Kinny, D., Georgeff, M., Rao, A.: A Methodology and Modelling Technique for Systems of
BDI Agents. Agents Breaking Away: Proceedings of the Seventh European Workshop on
Modelling Autonomous Agents in a Multi-Agent World, MAAMAW ’96. Lecture Notes in
Artificial Intelligence, Vol. 1038. Springer-Verlag, Berlin Heidelberg (1996) 56-71

9. Lacey, T., DeLoach, S.A.: Automatic Verification of Multiagent Conversations. Proceedings
of the Eleventh Annual Midwest Artificial Intelligence and Cognitive Science Conference,
(2000) 93-100

10. McDonald, J.T., Talbert, M.L., DeLoach, S.A.: Heterogeneous Database Integration Using
Agent Oriented Information Systems. Proceedings of the International Conference on
Artificial Intelligence (2000)

11. Nwana, H., Ndumu D., Leel, Collis J.: ZEUS: A Toolkit for Building Distributed Multi-
Agent Systems. Applied Artificial Intelligence Journal. 13 (1) (1999) 129-185

12. Raphael, Marc J.: Knowledge Base Support for Design and Synthesis of Multi-agent
Systems. MS thesis, AFIT/ENG/00M-21. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson Air Force Base Ohio, USA (2000)

13. Robinson, D.J.: A Component Based Approach to Agent Specification. MS thesis,
AFIT/ENG/00M-22. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson Air Force Base Ohio, USA (2000)

14. Wooldridge, M., Jennings, N., Kinny, D.: The Gaia Methodology for Agent-Oriented
Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems. 3 (3) (2000)

